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To solve operator equations of motion in quantum mechanics and in a quantum 
scalar field theory, we propose an explicit unitary scheme with arbitrary high 
order of accuracy. 
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Bender and Sharp (1'2) proposed a finite-difference approach to solve 
operator equations of motion in quantum mechanics and in (lattice- 
regulated) quantum field theory. They show that, for a certain class of 
systems, their difference scheme, which is based on the finite-elements 
method of numerical approximation, exactly conserves the canonical 
equal-time commutation relations (ETCRs). However, the Bender-Sharp 
scheme is implicit and computational difficulties arise, therefore 
Moncrief, ~3) Vfizquez, (4) and Qin and Zhang ~14) proposed explicit schemes 
which are unitary and preserve the ETCRs. 

ETCRs are very important properties of the equation. 
Bender et aI. (1~ applied the method to determine the spectrum for the 

underlying continuum theory. Applying an explicit scheme to the quantum 
field theory ~b, - qtxx + (m3/x/~) sin[(x/-2/m)~b ] = 0 on a Minkowski lattice, 
Vfizquez (H) obtained some estimates on the particle spectrum. Rogriguez 
and Vfizques (12) used the method to estimate the spectrum for the 
generalized quantum H6non-Heiles system. 

But not all the explicit schemes proposed are of high order, and only 
for systems with energy H =  ~ 2 5P + V(q) or H = Ho(p, q) + V(q), where Ho 
is a solvable system, and it would be of interest to find schemes that ( l )  are 
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explicit, even for highly nonlinear systems, (2)preserve unitary, and thus 
the ETCRs, (3) are of high order, and (4) are applicable to a wide class of 
systems. 

Here we propose an explicit unitary scheme, in which all proposed 
explicit unitary schemes can be expressed. 

Let us consider a one-dimensional quantum system 

H = Hi(p, q) + Hz(p, q) (1) 

where H1 and H2 are solvable systems. The Heisenberg equations of system 
(1) are 

dq(t) 1 1 1 
dt =i-h [q' H, +H2] = ~  [q, HI] +t~ [q' H2] 

dp( t ) 1 1 1 
dt ih [ P ' H I + H 2 ] = - ~ [ P ' H 1 ] + ~  [p'H2] 

(2) 

We consider systems HI and H2 separately. The Heisenberg equations 
of system H l are 

dq( t ) 1 dp( t ) 1 
dt =i-s [q' HI], dt = #  [p' HI] (3) 

HI is solvable, i.e., system (3) has an exact soluation 

�9 it 
q(t)=fl(qo, Po, t ) = e x P ( h H ~ ) q o e x p ( - ~ H 1  ) 

(,,) ( , , )  P(t)=gl(qo, Po, t)=exp ~Hx poexp - ~ H 1  

(4) 

The Heisenberg equations of system H2 are 

dq(0 1 @(t) I 
dt ih [q' H2]' dt ih [p' H2] (5) 

System (5) has an exact soluation 

�9 it H2) q(t)= f2(qo, Po, t)=exP (h  H2) qo exp ( -  - s 

= _ it H2 ) p(t) g2(qo, Po, t ) = e x P ( h H 2 ) p o e x p (  - ~ 
(6) 
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To solve system (1) in the interval [0, T], we divide it into N intervals of 
length ,c and define qk and pk as the operators q and p at time t = k,c. 

We construct the following explicit unitary schemes: 

1. Schemes of first order of  accuracy: ZMlst('c ) and ZQlst(,c). 
One scheme is 

q~ = fl(qk, pk, r), Pl = g~(qk, p~, ,c) 
(7) 

qZ'+l=f2(q~,pl,,c), p k + ~ = g 2 ( q l , p l , r  ) 

and we denote scheme (7) /Mist(,c ). This scheme can be expressed in the 
following form: 

qk+ l=  U+(,c) qkgl(,c), pk+~= U?(,c) pkUl(~) (7') 

where 

Ul('c)=exp(-hHl)exp(-hH2) 
Thus the scheme is unitary and satisfies the ETCRs. 

From the Baker-Campbell-Hausdorff (BCH) formula (15) 

=exp - ~ ( H I + H 2 ) +  5 - [ H 1 , H 2 ] +  ""  

i,c 
= e x p [ - - ~ ( H ~ + H 2 ) J + o ( , c  2) 

Therefore, the local error of scheme (7) with respect to time z is o(,ca), i.e., 
scheme (7) is of order 1. Another scheme of order 1 is 

ql = f2(q k, P~, r), p~ = g2(q k, p~, r) 
(8) 

q~+l=f~(ql ,p l , ,c) ,  pk+~=g~(q~,p~,,c) 

we denote scheme (8) ZQlst(,c). 

2. Schemes of  second order of  accuracy: ZM2na(Q and ZQz~d(r). 
If we have two schemes A(,c) and B(r) for system (1), we can com- 

pound a scheme B(%)A(r~) of A(r) and B(r), i.e., first we implement 
scheme A(,c) with initial qk, pk, and step ,c~, and get results q~, p~. Then 
we implement scheme B(r) with initial ql, Pl,  and step ,c2 and get the final 
result qk + 1, pk + 
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We use the composition of ZMlst('c) and ZQlst(v) to construct a 
scheme of second order. The scheme is ZM2nd('C) ~ - - -  ZQlst(CllT) 
ZMlst(Cl2"C), where cn = c12 = 1/2, i.e., 

ql = fl(q k, pk, ~/2), Pl  = gl(q ~, pk, U2 ) 

q2 = f2(ql, Pl, z/2), P2 = g2(ql, Pl, ~/2) 
(9) 

q3 = f2(q2, P2, r/2), P3 = g2(q2, P2, "c/2) 

qk+ 1= fl(q3, P3, r/2), pk+ 1= gl(q3, P3, "c/2) 

or  
ql = fl(q k, pk, r/2), Pl = gl(q k, pk, z/2) 

q2 = f2(ql, Pl, ~), P2 = gz(ql, Pl, r) (10) 

qk+ l =  L(q2,  P2, r/2), pk+ 1= gl(q2, P2, r/2) 

This scheme can be expressed in the following form: 

q k + l =  U](.c)qkU2(.r), pk+l=  U~(.c) pkU2(.c) (lO') 

3. Schemes of fourth order of accuracy: ZM4th("C) and zO4th('C). 

Using the composition of ZM2nd(r) with step c21~, c22r, c21r, respec- 
tively, we construct a scheme of 4th order of accuracy 

ZM4th(~ ) = ZM2nd(C217J) ZM2nd(C22~c) ZM2nd(C21"C) (12) 

(11) 

where  Cll = c12 = 1/2, i.e., 
ql = fz(q k, pk, z/2), 

q2 = f l (q l ,  Pl,  z), 

qk+l = f2(q2, P2, ~/2), 

P2 = g2(q k, pk, r/2) 

P2 = gl(ql, Pl, "c) 

pk + 1 = g2(q2, P2, z/2) 

where 

U 2 ( z ) = e x p ( -  ~h H , ) e x p ( - h  H 2 ) e x p ( -  ~h H1 ) 

By BCH formula, one can easily obtain that 

F ir (H1 + H2) 1 + o(r 3) U2(r) = exp [_ - 

i.e., scheme (10) is a scheme of order 2. Moreover, U 2 ( - r )  U2(~) = I, which 
means that scheme (10) is time-reversible. 

Using the composition of ZQl~t(r) and ZMls t ( t ' ) ,  we construct another 
scheme of second order. The scheme is ZQ2no(r  ) = ZMlst(Cnr ) ZQlst(c12r), 
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From the BCH formula, expecting scheme (12) to be of 4th order of 
accuracy, we take Czj = 1/(2 - 21/3), c22 = -21/3(2 - 21/3). 

Using the composition of ZQ2nd(r) with steps c21r, c22z, c21r, respec- 
tively, we construct another scheme of 4th order 

ZQ4tla(z- ) = ZQ2nd(C21 "c) ZQ2nd(C22Z ) ZQ2nd(C21 "C) (13) 

4. Schemes of sixth order of accuracy: ZM6th(77) and ZQ6th('t'); 

ZM6th(.C) = Z M  nth( C 3t "c ) ZM4th( C 32 "c ) ZMath( C 31 "~ ) (14) 

ZQ6th(~ ) = ZQ4th(C31 "~) ZQ4th(C32 "c) ZQ4th(C31 .r) (15) 

where c31 = 1/(2 - 21/5), c32 = -21/5/(2 - 21/5). 

5. Schemes of 2nth order of accuracy: ZM2,th(Z) and ZQ2,th(~). 
More generally, if a scheme of order 2(n - 1) is already known, we can 

obtain a scheme of order 2n by the composition. 

ZM2.th(z)=ZM2(. 1)th(c~lr)ZM2(n 1)tla(Cn2"C)ZM2~n 1)tla(Cnl~') (16) 

ZQ2,~th(r)=ZQ2(~ l)th(CnlT)ZQz(n l)th(cn2"c)ZM2(,,_l)tia(cnlr) (17) 

where c,l  = 1/(2-21/(2~-1)) and c ,2=  -21/(2n-1)/(2-21/(2~ 1)). We thank 
H. Yoshida (9) for calculating these coefficients for a special type of classical 
Hamiltonian system. Qin and Zhu (16) show that these coefficients are valid 
for general classical Hamiltonian systems and some general schemes; we 
can show that these coefficients are also valid for our proposed schemes 
and Hamiltonian systems. The proofs Will be given in another paper, and 
are pure mathematical calculations of commutators. 

Remarks. (I)  If H =  H~ + H2 + ..- + H, ,  the Heisenberg equation 
of motion for the system H~ has an exact solution 

q(t)=f~(qo, po, t)=exp ~H~ qoexp - ~ H ~  

(18) 
it H~) P(t)=gi(qo, Po, t ) = e x P ( h H i ) p o e x p ( -  ~ 

Let Is1, s2 ..... sn] be an arbitrary permutation of [1, 2 ..... n]; we construct 
ZMls t and ZQl~t, respectively, in the following forms: 

ZMI~t(r): 

ql =fsl(q k, pk, r), 

q2 =fs2(ql, Pl ,~) ,  

qk+l =fs . (q , , -1 ,  P~- I ,Z) ,  

Pl = g~.~(qk, pk, r) 

P2 ----- g,2(ql, Pl ,  z) 

Pk+l=gs,(qn l,Pn l,r) 

(19) 
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ZQlst('c): 

ql =f~.(qk, pk, r), 

q2 =f~.  t(ql, Pl,  z), 
. . .  

qk+l =f~(q,, 1, Pn 1, "c), 

Pl = g,o(qk, pk, "r) 

P2 = g,., ~(ql, PL, Z) 

pk+l=g,l(q,,_l,p,, l,'C) 

(20) 

These schemes are explicit and unitary. Following the above approach, 
we can construct high-order schemes for H =  HI + He + -"  + Hn by the 
compositions of ZQ~st('r) and ZM~st('r). 

(2) Applying these schemes to a nonlinear quantum scalar field 
theory in two-dimensional Minkowski space 

q5,=II, H,-cP~x-f(cl))=O (21) 

we can obtain a series of explicit unitary schemes for (21); for example, we 
break up the Hamiltonian 

H= f dx(1/2q~ 2 + 1/2H 2 + V(<b)) 

into H 1 =S dx(1/2cb2+ V(~)) and H 2 = ~  dx H2/2. The ZMist and ZQlst 
are constructed, respectively, in the following forms: 

ZMlst(z): 

H m = g y + z  ~ / + l - 2 h j  q-qb/-l_k_f(q0y) 

~o, = q}~ (22) 

/ ~ 7 + 1  /~01  
J 

i.e., 

[~]+~ - 2~] + r 1 _}_ f(':b])] 
B]  +~ = H 7 + r  h2 (23) 

~ ;  +1 = (j~j + THj +1 

ZQ.t(~): 
n ~7+'  = q~+ +rHj'  

iab 
,, + 1 2q0 ]  + 1 q_ qbn + ] ( 2 4 )  

~ j +  1 ]--  1 1 
H~+I = Ha + r  h 2 + f ( q ~  + ) 
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where At = r and Ax = h; ~ and H i are the field operators at the point 
(t=nr,  x=jh). Schemes (23) and (24) were proposed by Vfizquez. The 
scheme of order 4 constructed by the composition of (23) and (24) is the 
scheme that appeared in ref. 14. 

A C K N O W L E D G M E N T S  

This work was supported by the National Natural Science Foundation 
of China. The author expresses his gratitude to Prof. K. Feng and 
M.Z. Qin for advice. Thanks are also due to Prof. L. V~zquez for useful 
discussions. 

REFERENCES 
!.. C. M. Bender and D. H. Sharp, Phys. Rev. Lett. 50:1535 (1983). 
2. C. M. Bender, K. A. Milton, and D. H. Sharp, Phys. Rev. Lett. 51:1815 (1983). 
3. V. Mencrief, Phys. Rev. D 28:2485 (1983). 
4. L. V/tzquez, Z. Naturforsch. 41a:788 (1986). 
5. Feng Kang, On difference scheme and symplectic geometry, in Computation of Partial 

Differential Equations, Feng Kang, ed. (Science Press, Beijing, 1985), pp. 42-58. 
6. Feng Kang and Qin Meng-zhao, The symplectic methods for the computation of 

Hamiltonian equations, in Lecture Notes in Mathematics, No. 1297 (Springer-Verlag, 
1987), pp. 1-37. 

7. Feng Kang, The Hamiltonian way for computing Hamiltonian dynamics, in The State of 
the Art of Applied and Industrial Mathematics, R. Spigler, ed. (Kluwer, Dordrecht, 1990). 

8. Qin Meng-zhao and Zhang Mei-qing, Symplectic Runge-Kutta schemes for Hamiltonian 
systems, to appear. 

9. Haruo Yoshda, Construction of higer order symplectic integrators, to appear. 
10. C. M. Bender, K. A. Milton, D. H. Sharp, L. M. Simmons, Jr., and R. S. Tong, Phys. Rev. 

D 32:1476 (1985). 
ll.  L. V~zquez, Phys. Rev. D 35:35 (1987). 
12. M. J. Rodriquez and L. V~izquez, Spectrum estimation for the generalized quantum 

H6non-Heiles system, Second Howard University Symposium on Non-linear Semigroups, 
Partial Differential Equations and Attractors (August 1987). 

13. R. D. Ruth, IEEE Trans. Nucl. Sci. NS-30, 2669-2671 (1983). 
14. Qin Meng-zhao and Zhang Mei-qing, Explicit Runge-Kutta-like schemes to solve certain 

quantum operator equations of motion, ,L Stat. Phys. 60:839 844 (1990). 
15. V. S. Varadarajan, Lie Groups, Lie Algebras and Their Representation (Prentice-Hall, 

Englewood Cliffs, New Jersey, 1974). 
16. Qin Meng-zhao and Zhu Wen-Jie, Construction of higher order schemes for ordinary 

differential equations by composing self-adjoint lower order ones, to appear. 


